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We study suspensions of oblate rigid particles in a viscous fluid for different values
of the particle volume fractions. Direct numerical simulations have been performed
using a direct-forcing immersed boundary method to account for the dispersed
phase, combined with a soft-sphere collision model and lubrication corrections
for short-range particle–particle and particle–wall interactions. With respect to the
single-phase flow, we show that in flows laden with oblate spheroids the drag is
reduced and the turbulent fluctuations attenuated. In particular, the turbulence activity
decreases to lower values than those obtained by accounting only for the effective
suspension viscosity. To explain the observed drag reduction, we consider the particle
dynamics and the interactions of the particles with the turbulent velocity field and
show that the particle–wall layer, previously observed and found to be responsible for
the increased dissipation in suspensions of spheres, disappears in the case of oblate
particles. These rotate significantly slower than spheres near the wall and tend to stay
with their major axes parallel to the wall, which leads to a decrease of the Reynolds
stresses and turbulence production and so to the overall drag reduction.
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1. Introduction
Suspensions of solid particles in fluids can be found in many environmental and

industrial applications. Sediment transport in estuaries (Mehta 2014), blood flow in
the human body, pyroclastic flows from volcanoes and pulp fibres in paper-making
(Lundell, Söderberg & Alfredsson 2011) are among the examples of flows that deserve
further investigations. The presence of solid rigid particles alters the global transport
and rheological properties of the mixture in complex (and often unpredictable) ways.
Many efforts have therefore been devoted to quantify the effects of the particles in
these flows, starting from the simpler case of monodisperse rigid neutrally buoyant
spherical particles. The first studies of suspensions under laminar conditions can
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be traced back to Einstein (1906, 1911), who analytically derived an expression
for the effective viscosity νe of a suspension of rigid spheres in the dilute and
viscous limit, νe/ν = 1 + (5/2)φ, where φ is the volume fraction and ν is the
kinematic viscosity of the suspending fluid. A quadratic correction, accounting
for particle–particle interactions, was later proposed for higher volume fractions
(Batchelor 1970; Batchelor & Green 1972). The rheology of dense suspensions is
usually characterized by semi-empirical formulae for the effective viscosity (Stickel
& Powell 2005; Guazzelli & Morris 2011).

Inertial effects, yet in laminar flows, are shown to induce significant modifications
of the suspension microstructure and to create a local anisotropy responsible for
shear thickening (Kulkarni & Morris 2008; Picano et al. 2013), and thus lead to
a change of the macroscopic suspension dynamics. Shear thickening and particle
migration towards regions of low shear has been observed in several previous studies
for dense suspensions at low Reynolds number (Hampton et al. 1997; Brown &
Jaeger 2009; Yeo & Maxey 2011). The highly inertial regime was considered in
the pioneering work of Bagnold (1954), who showed that shearing closely spaced
particles induces an effective viscosity that increases linearly with the shear rate,
resulting in a normal or dispersive stress in addition to the shear stress (Hunt et al.
2002). Recently, Lashgari et al. (2014, 2016) documented the existence of three
different regimes when changing the volume fraction φ of neutrally buoyant spherical
particles and the Reynolds number Re: a laminar-like regime at low Re and low to
intermediate φ, where the viscous stress dominates dissipation; a turbulent-like regime
at high Reynolds number and low to intermediate φ, where the turbulent Reynolds
stress plays the main role in the momentum transfer across the channel; and a third
regime at higher φ, denoted as inertial shear thickening, characterized by a significant
enhancement of the wall shear stress due to the particle-induced stresses.

When the Reynolds number is sufficiently high, the flow becomes turbulent,
exhibiting chaotic and multiscale dynamics. The presence of the finite-size particles
(particles comparable in size to or larger than the smallest hydrodynamic scales of
the flow) can change the turbulent structures at or below the particle size (Naso &
Prosperetti 2010; Homann, Bec & Grauer 2013). These interactions modulate the
whole process by inducing non-trivial effects on the turbulence; see, for example,
the studies in homogeneous isotropic turbulence by Lucci, Ferrante & Elghobashi
(2010) and Fornari, Picano & Brandt (2016b), the latter including sedimentation.
The first simulations of finite-size particles in a turbulent channel flow, like those
discussed here, were performed by Pan & Banerjee (1996), revealing that turbulent
fluctuations and stresses increase in the presence of the solid phase. Matas, Morris &
Guazzelli (2003), Loisel et al. (2013), Yu et al. (2013) and Lashgari, Picano & Brandt
(2015) considered the turbulence onset in suspensions of neutrally buoyant spherical
particles and reported a decrease of the critical Reynolds number for transition to
turbulence in the semi-dilute regime. The simulations by Shao, Wu & Yu (2012)
revealed a decrease of the fluid streamwise velocity fluctuations due to an attenuation
of the large-scale streamwise vortices in a turbulent channel flow. Kidanemariam
et al. (2013) considered heavy finite-size particles and showed accumulation in the
near-wall low-speed streaks at low φ. Picano, Breugem & Brandt (2015) studied dense
suspensions of neutrally buoyant particles in turbulent channel flow up to volume
fraction φ = 20 %. These authors showed that the velocity fluctuation intensities
and the Reynolds shear stress gently increase with φ and then sharply decrease
at φ = 20 %, even though the overall drag still increases. They attributed the drag
increase to the enhancement of turbulence activity for φ 6 10 % and then to the
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particle-induced stresses that govern the dynamics at high φ. Costa et al. (2016)
showed that the turbulent drag of a suspension of spherical particles is always higher
than that predicted by accounting only for the effective suspension viscosity. This
is attributed to the formation of a particle–wall layer, a layer of particles forming
near the wall. Fornari et al. (2016a) investigated the role of fluid and particle inertia,
also in the semi-dilute regime, and show that the excluded volume is responsible for
the turbulence modulations, while the particle inertia is negligible for solid to fluid
density ratios below 10.

The dynamics of suspension in the presence of non-spherical particles is less well
understood (Prosperetti 2015), the majority of previous studies in the turbulent regime
having dealt with point-like spheroidal particles. Most of these investigations further
assume dilute conditions and neglect the feedback on the flow. In this so-called
one-way coupling regime, spherical particles display accumulation near the wall
(turbophoresis) and preferential sampling of low-speed regions (see e.g. Sardina et al.
2011, 2012). Turbulent channel flow of non-spherical particles has been investigated
by several authors (Zhang et al. 2001; Mortensen et al. 2008; Marchioli, Fantoni
& Soldati 2010; Challabotla, Zhao & Andersson 2015a), with focus on the particle
dynamics. Challabotla, Zhao & Andersson (2015b) investigated the rotational motion
of inertia-free spheroids in turbulent channel flow using equations given by Jeffery
(1922) for particle rotation. These authors showed that oblate spheroids preferentially
align their symmetry axes normal to the wall, whereas prolate ones are preferentially
parallel to the wall. The mean particle rotation was also reported to reduce when
increasing the particle aspect ratio. Far from the wall, where the mean shear vanishes,
this preferential alignment disappears and the behaviour is similar to that observed
in homogeneous and isotropic turbulence (Voth 2015). Kulick, Fessler & Eaton
(1994) studied small particles at higher concentrations, modelling feedback on the
flow (two-way coupling), and reported that the fluid turbulence is attenuated by
the addition of particles, while the turbulence anisotropy increases. This effect was
reported to increase with the particle Stokes number, particle mass loading and
distance to the wall. Paschkewitz et al. (2004) and Gillissen et al. (2008) showed
drag reduction in suspensions of rigid fibres, similarly to what was reported for dilute
polymer solutions (Ptasinski et al. 2003; Dubief et al. 2004).

Despite these previous efforts, the turbulent flow of finite-size non-spherical particles
is still unexplored. This is therefore the object of the present study. In particular, we
consider turbulent channel flow of finite-size oblate spheroids at volume fractions
up to φ = 15 %. Aspect ratio (ratio of polar over equatorial radius) AR = 1/3 is
chosen for the particles to depart adequately from sphericity, where the effect of
shape is more noticeable. We show that, unlike spherical particles, oblate particles
cause drag reduction as the volume fraction φ increases within the investigated range.
We attribute the drag reduction to the absence of a particle–wall layer and to an
attenuation of the near-wall turbulence, explained by the preferential orientation of
particles and reduced rotation near the wall.

The paper is organized as follows. The governing equations and the flow geometry
are introduced in § 2, followed by the results of the numerical simulations in § 3. The
main conclusions and final remarks are drawn in § 4. Results for laminar flow are
reported in appendix A for comparison.

2. Methodology
Several approaches for performing interface-resolved direct numerical simulations

(DNS) of particle-laden flows have been proposed in recent years. Among these
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methods are force coupling (Lomholt & Maxey 2003), front tracking (Unverdi &
Tryggvason 1992), Physalis (Zhang & Prosperetti 2005; Sierakowski & Prosperetti
2016), algorithms based on the lattice Boltzmann method for resolving the fluid
phase (Ladd 1994a,b) and the immersed boundary method (IBM) (Peskin 1972) as
used here. Several algorithms for IBM have been proposed (Mittal & Iaccarino 2005;
Uhlmann 2005; Breugem 2012; Kempe & Fröhlich 2012) since the original work
by Peskin (1972). The possibility of exploiting efficient computational algorithms for
solving the Navier–Stokes equations on a Cartesian grid has made IBM a popular tool
to investigate particle suspensions. The IBM algorithm proposed by Breugem (2012)
has been recently extended to ellipsoidal particles by Ardekani et al. (2016b), using
lubrication, friction and collision models for the short-range particle interactions. In
this work we use the same numerical model to simulate dense suspensions of oblate
spheroidal particles in turbulent plane channel flow.

2.1. Governing equations
The incompressible Navier–Stokes equations describe the flow field in the Eulerian
phase:

ρf

(
∂u
∂t
+ u · ∇u

)
=−∇p−∇pe +µf∇2u+ ρf f , (2.1)

∇ · u= 0. (2.2)

Here u is the fluid velocity, pe is the contribution to the total pressure from a constant
pressure gradient that drives the flow, p is the modified pressure (the total pressure
minus pe and the contribution from the hydrostatic pressure), and ρf and µf are the
density and dynamic viscosity of the fluid. The extra term f on the right-hand side of
(2.1) is the IBM force field, active in the immediate vicinity of a particle surface to
enforce no-slip and no-penetration boundary conditions.

The motion of rigid spheroidal particles is described by Newton–Euler Lagrangian
equations:

ρpVp
dUp

dt
=
∮
∂Sp

τ · n dA− Vp∇pe + (ρp − ρf )Vpg+Fc, (2.3)

d(Ipωp)

dt
=
∮
∂Sp

r× (τ · n) dA+ Tc. (2.4)

Here Up and ωp are the particle translational and the angular velocity, ρp, Vp and Ip
are the mass density, volume and moment-of-inertia tensor of a spheroidal particle, r
indicates the position vector with respect to the centre of the spheroid and n is the
outward unit normal vector at the particle surface ∂Sp where the stress tensor τ =
−pI + µf (∇u + ∇uT) acting on the surface of the particle is integrated. The force
terms −ρf Vpg and Vp∇pe account for the hydrostatic pressure and a constant pressure
gradient ∇pe, with g the gravitational acceleration. Finally, Fc and Tc are the force
and torque resulting from particle–particle (particle–wall) collisions.

2.2. Numerical algorithm
The flow field is resolved on a uniform (1x = 1y = 1z) staggered Cartesian grid,
while particles are represented by a set of Lagrangian points, uniformly distributed on
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the surface of each particle. The number of Lagrangian grid points NL on the surface
of each particle is defined such that the Lagrangian grid volume 1Vl becomes equal
to the volume of the Eulerian mesh 1x3.

Taking into account the inertia of the fictitious fluid phase inside the particle
volumes, Breugem (2012) showed that (2.3) and (2.4) can be rewritten as

ρpVp
dUp

dt
≈−ρf

NL∑
l=1

Fl1Vl + ρf
d
dt

(∫
Vp

u dV

)
+ (ρp − ρf )Vpg+Fc, (2.5)

d(Ipωp)

dt
≈−ρf

NL∑
l=1

rl ×Fl1Vl + ρf
d
dt

(∫
Vp

r× u dV

)
+ Tc. (2.6)

The point force Fl is calculated at each Lagrangian point using the difference between
the particle surface velocity (Up+ωp× r) and the interpolated first prediction velocity
at the same point. The first prediction velocity is obtained by advancing (2.1) in time
without considering the force field f .

The forces Fl integrate to the force field f using the regularized Dirac delta function
δd of Roma, Peskin & Berger (1999):

f ijk =
NL∑
l=1

Flδd(xijk −Xl)1Vl, (2.7)

with xijk and Xl referring to an Eulerian and a Lagrangian grid cell. This smooth delta
function essentially replaces the sharp interface with a thin porous shell of width 31x;
it preserves the total force and torque on the particle provided that the Eulerian grid is
uniform. An iterative algorithm is employed to calculate the force field f , allowing for
a better estimate of no-slip and no-penetration boundary conditions (Breugem 2012).
Equations (2.5) and (2.6) for the particle motion and (2.1) and (2.2) for the flow
are integrated in time using an explicit low-storage Runge–Kutta method with the
pressure correction scheme used in Breugem (2012) to project the velocity field in
the divergence-free space.

When the distance between particles (or a particle and a wall) is smaller
than one Eulerian grid size, the lubrication force is underpredicted by the IBM.
To compensate for this inaccuracy and to avoid computationally expensive grid
refinements, a lubrication model based on the asymptotic analytical expression for
the normal lubrication force between unequal spheres (Jeffrey 1982) is used. Here
we approximate the two spheroidal particles with two spheres with the same mass
and radius corresponding to the local curvature at the points of contact. Using these
approximating spheres, a soft-sphere collision model with Coulomb friction takes
over the interaction when the particles touch. The restitution coefficients used for
normal and tangential collisions are 0.97 and 0.1, with Coulomb friction coefficient
set to 0.15. More details about the models and validations can be found in Costa
et al. (2015) and Ardekani et al. (2016b).

2.3. Flow geometry
We study a pressure-driven plane channel flow in a computational domain of size Lx=
6h, Ly=2h and Lz=3h in the streamwise, wall-normal and spanwise directions, where
h is half the channel height. The bulk velocity Ub is fixed to guarantee a constant bulk
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Reynolds number Reb = 2hUb/ν = 5600 corresponding to a friction Reynolds number
Reτ = U∗h/ν = 180 for the single-phase case with ν, the kinematic viscosity of the
fluid phase, and U∗ =

√
τw/ρf , the friction velocity, calculated with the shear stress

τw at the wall. Periodic boundary conditions are imposed for both fluid and particles
in the streamwise, x, and spanwise, z, directions, while the no-slip and no-penetration
boundary conditions are employed at the walls. We note here that simulations in larger
domains would be quite expensive computationally and have not been performed for
the case of oblate particles. Nevertheless, the domain used in this study is larger than
the minimal-unit channels adopted to identify the physical mechanisms underlying
self-sustaining turbulence in Newtonian fluids (Hamilton, Kim & Waleffe 1995) as
well as polymer suspensions where drag reduction is also observed (Xi & Graham
2010). In addition, as also reported in Picano et al. (2015), the presence of particles
tends to disrupt long flow structures so that we believe the main conclusions from the
simulations, focusing on drag reduction and particle dynamics, would not be different
in longer domains.

We consider non-Brownian neutrally buoyant rigid spheroidal particles with aspect
ratio AR=1/3 (ratio of polar over equatorial radius). The particle equivalent diameter
Deq, i.e. the diameter of a sphere with the same volume, is h/Deq = 9 to compare
with the results of Picano et al. (2015) for spheres with diameter D = Deq. The
corresponding maximum and minimum diameters of the oblate particle used here are
D1 = h/6.24 and D2 = h/18.72. The particle Reynolds number based on the local
shear, Rep ≡ γ̇D2

eq/4ν, ranges between approximately 95 close to the walls and 0 at
the centreline of the channel, with γ̇ approximated by the wall-normal gradient of
the mean velocity.

We perform simulations at four different volume fractions φ= 5, 7.9, 10 and 15 %,
corresponding to 7500 particles at φ = 15 %; we also consider the case of spheres at
φ = 10 % and the unladen case for a direct comparison. We reproduced the results
at φ = 10 % in Picano et al. (2015) with the collision model discussed in Ardekani
et al. (2016b), accounting also for friction between the particles (and the wall), and
at higher resolution, the same used for the oblate particles. The results show a 4 %
difference in the friction Reynolds number Reτ , at twice the grid resolution.

The simulations are performed over a uniform Cartesian grid with the resolution
of 32 grids per equivalent diameter Deq, and NL = 3720 and NL = 3219 Lagrangian
points on the surface of oblate and spherical particles, respectively. A summary of the
simulated cases is given in table 1. The simulations start from the laminar Poiseuille
flow with random distribution of the particles’ positions and orientations. The noise
introduced by the presence of the particles rapidly triggers the transition to a fully
turbulent state, after which the statistics are collected for approximately 16 large-eddy
turnover times h/U∗.

3. Results

We first display snapshots of the fluid flow and particles; see figure 1, where the
instantaneous streamwise velocity u is depicted on different horizontal and vertical
planes for the cases with oblates at φ = 5, 10 and 15 % and for spheres at φ = 10 %.
For clarity, just a fraction of the particles (those lying within the visualized xz and
yz planes) are displayed. Streamwise low-speed streaks, characteristic of wall-bounded
turbulence, can be observed near the wall for all cases, being however more noisy in
the flow laden with spheres.
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FIGURE 1. (Colour online) Instantaneous snapshots of streamwise velocity u in the
presence of particles on orthogonal planes xz, yz and xy for (a) oblates at φ = 5 %,
(b) oblates at φ = 10 %, (c) oblates at φ = 15 % and (d) spheres at φ = 10 %. For clarity,
just a fraction of particles lying within the xz and yz planes are displayed.

Oblate, AR= 1/3 Sphere
Case φ = 0 % φ = 5 % φ = 7.9 % φ = 10 % φ = 15 % φ = 10 %

Np 0 2500 3965 5000 7500 5000
Reb — — 5600 — — —
Lx × Ly × Lz — — 6h× 2h× 3h — — —
Nx ×Ny ×Nz — — 1728× 576× 864 — — —
1x+ 0.625 0.623 0.615 0.608 0.599 0.684
D+eq — 19.94 19.67 19.44 19.17 21.89

TABLE 1. Summary of the different simulation cases: Np indicates the number of particles
with equivalent diameter Deq = h/9; Nx, Ny and Nz are the number of grid cells in each
direction; and 1x+ and Deq

+ are the Eulerian grid size and the particle equivalent diameter,
given in viscous wall units for each simulation.

3.1. Fluid-phase statistics: drag reduction
For the statistics presented hereafter, the fluid velocity is considered only when outside
the particles, whereas values pertaining to rigid-body motion of the solid phase are
used for the particle statistics. To distinguish between phases, we use a phase indicator
function that determines whether a grid point is located inside the fluid or solid phase.
The mean fluid velocity profiles, scaled in outer units Uf /Ub and inner units U+f ≡
Uf /U∗, are depicted in figure 2 versus y/h and y+ ≡ yU∗/ν for the different cases.
The results in figure 2(a) show that the mean velocity at the core of the channel
increases when increasing the solid volume fraction (see inset), whereas it decreases
around y/h≈ 0.2, that is at the beginning of the log layer (y+ ≈ 35) for the studied
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FIGURE 2. (Colour online) Mean fluid velocity profiles Uf in the streamwise direction
for the different cases under investigation. The data are scaled with (a) outer units,
Uf /Ub versus y/h, and (b) inner units, U+f ≡ Uf /U∗ versus y+ ≡ yU∗/ν, depicted in
semi-logarithmic scale. The inset in (a) displays the increase of the mean velocity at the
core of the channel.

Reynolds number. As the simulations assume constant bulk velocity Ub, this is a first
indication of reduced drag. The mean fluid velocity profile for spheres at φ = 10 %
deviates from the unladen case more than for oblates at the same volume fraction.
Displaying data in inner scaling (see figure 2b), we identify a region (50< y+< 150)
where the mean profiles follow a log law of the type

U+f =
1
κ

ln(y+)+ β. (3.1)

The values of the effective von Kármán and additive constants, κ and β, that best fit
our results are reported in table 2 together with the friction Reynolds number Reτ .
Note that a reduced κ is a sign of drag reduction, while a reduced β indicates the
opposite (Virk 1975). The data in table 2 show that κ and β decrease with increasing
volume fraction φ for oblate particles. The largest reduction of β is however found
for spheres, while the value of κ is close to that for oblates at φ = 10 %. The
combination of the two effects results in drag reduction for oblate particles and a
drag enhancement for the spheres as confirmed by the friction Reynolds number Reτ ,
shown in figure 3(a) versus φ for oblate and spherical particles. For oblate particles,
the effect of the solid phase is small for φ . 5 %; the total drag clearly decreases
below the value of single-phase flow for larger volume fractions: Reτ = 172.5 for
φ= 15 %, corresponding to a drag reduction of 8.2 % with respect to the single-phase
case ((τw|φ=15 %− τw|φ=0 %)/τw|φ=0 %). The drag reduction percentage is depicted versus
the volume fraction in figure 3(b). The data in Picano et al. (2015) for perfect
spheres, conversely, shows a clear increase of the friction Reynolds number when
increasing the volume fraction.

Drag reduction with small (smaller than the Kolmogorov length scale) rigid fibre
additives has been reported in the literature (e.g. Paschkewitz et al. 2004; Gillissen
et al. 2008). These authors associate the drag reduction with the attenuation of the
turbulence and the increase of its anisotropy, which results in higher streamwise
velocity fluctuations and lower spanwise and wall-normal velocity fluctuations (when
scaled in inner units) with respect to the single-phase flow, similarly to what was
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FIGURE 3. (Colour online) (a) Friction Reynolds number Reτ for oblate particles and
spherical particles from Picano et al. (2015) and (b) the drag reduction percentage for
oblate particles versus volume fraction φ. The case denoted ‘Oblates (NR)’ (no rotation)
will be addressed later in this section.

Oblate, AR= 1/3 Sphere
Case φ = 0 % φ = 5 % φ = 7.9 % φ = 10 % φ = 15 % φ = 10 %

Reτ 180 179.5 177 175 172.5 197
κ 0.4 0.38 0.36 0.34 0.28 0.32
β 5.5 4.9 4.6 4 1.6 0.8

TABLE 2. The friction Reynolds number Reτ from all simulations at fixed bulk Reynolds
number Reb = 5600 and the von Kármán constant κ and the additive constant β of the
logarithmic law, calculated in the range of 50< y+ < 150.

observed for polymer additives (De Angelis, Casciola & Piva 2002; Nowbahar et al.
2013). De Angelis et al. (2002) explained this by revealing that, in most of the
field, polymers are extracting energy from the turbulence, resulting in a reduction of
spanwise and wall-normal velocity fluctuations. In the streamwise direction, however,
an increase in the velocity fluctuations is caused by larger streamwise vortices located
further from the wall. The root-mean-square (r.m.s.) of the fluid velocity fluctuations
and the Reynolds shear stresses for suspensions of finite-size oblates are depicted
in figure 4 for the different cases studied here. The data reveal that the peak of
the turbulent velocity fluctuations is reduced in the presence of oblate particles
with respect to the single-phase flow for all three components. In the cross-stream
directions, the fluctuations decrease with the volume fraction of oblate particles, while
an increase is observed for spheres at φ = 10 %. The peak in the streamwise velocity
fluctuations displays a reduction for both spherical and oblate particles with respect
to the single-phase flow, while a slight increase of the fluctuations is observable
in the regions far from the wall. This slight increase, present for both spherical
and oblate particles, can be related to the movement of particles in the wall-normal
direction, where they accelerate or decelerate the flow based on their streamwise
velocity. A clear turbulence attenuation is shown by the Reynolds shear stress profiles
of oblate particles. The turbulence attenuation is weak at φ = 5 % and becomes more
pronounced at higher volume fractions; a considerable reduction in the Reynolds shear
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FIGURE 4. (Colour online) Root-mean-square velocity fluctuations and Reynolds shear
stress for the fluid phase, scaled in outer units: (a) streamwise u′frms

; (b) wall-normal v′frms
;

(c) spanwise w′frms
; and (d) Reynolds shear stress 〈u′fv′f 〉.

stress is observed for the case at φ = 15 %. On the contrary, a significant increase
in the turbulence activity is observed for spheres at φ = 10 %. Interestingly, v′f and
w′f change significantly with respect to the single-phase flow in the close vicinity of
the wall, which is peculiar to spherical particles and missing in the case of oblates.
This indicates that the effect of particles on the turbulence very close to the wall
is considerably higher for spherical particles than for oblates due to the absence of
a particle layer close to the wall, as documented later. As discussed in Costa et al.
(2016), accounting for the particle dynamics in this region is critical for an accurate
prediction of the overall drag.

Finally, we examine how the presence of the oblate particles affects the turbulent
structures near the wall by computing the two-point spatial correlation of the velocity
field. The autocorrelations of the streamwise and wall-normal velocity, Ruu and Rvv,
are depicted in figure 5 versus the spanwise separation, normalized by the major
radius of the oblate particles. Figure 5(a,b) shows Ruu at two different distances
from the wall, y+ = 20 and y+ = 40, while figure 5(c,d) reports Rvv at the same
wall distances. The data reveal the characteristics of typical turbulence structures
near the wall, i.e. quasi-streamwise vortices and low-speed streaks (Kim, Moin &
Moser 1987; Pope 2000; Brandt 2014). The results at y+ = 20 show an increase
in the minimum location of Ruu, i.e. widening of the near-wall streaks, whose size
becomes independent of the volume fraction, and appears to be more correlated to
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FIGURE 5. (Colour online) Correlations of the velocity fluctuations versus the spanwise
separation, normalized by the major radius of the oblate particles z/Rmax, for the different
cases under consideration: (a) streamwise–streamwise component Ruu at y+ = 20; (b) Ruu
at y+=40; (c) wall-normal–wall-normal component Rvv at y+=20; and (d) Rvv at y+=40.

the particle size. This is in contrast with the results for spherical particles reported
in Picano et al. (2015), where the spacing increases monotonically with the volume
fraction. We also observe a decrease of the minimum of the correlation, i.e. less
pronounced streaks, as the volume fraction increases, while further away from the
wall (y+ = 40) this effect disappears; the peak is still distinct, but the streamwise
velocity streaks are considerably wider in the particle-laden flows. The results for
Ruu are consistent with the turbulence attenuation reported above for oblate particles
as the width and the spacing of the streamwise velocity streaks increase in the
drag-reducing turbulent flows (Stone, Waleffe & Graham 2002), corresponding to
an increase in the extent of the buffer layer. The wall-normal autocorrelations Rvv
indicate a progressive smoothing of the local minima with the volume fraction in the
cases of oblate particles at both wall-normal locations under consideration, indicating
a more random flow in terms of coherent turbulence structures.

3.2. Effective viscosity and stress budget
To better understand the effect of particles on the fluid turbulence, one may consider
the idealized case of a suspension with effective viscosity νe. The effective viscosity
of a particle suspension is always higher than the viscosity for the single-phase
flow: the ratio between the effective suspension viscosity and the fluid viscosity
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FIGURE 6. (Colour online) (a) Reynolds stress of the combined phase, scaled in outer
units for oblate particles at φ = 10 %, compared to a single-phase flow simulation with
ν = νe|φ=10 %. The solid lines show the linear fitting of the slope of the profiles at the
centreline (y/h = 1). (b) The effective turbulent friction Reynolds number Ree

T and the
effective friction Reynolds number Ree

τ versus the volume fraction φ. These values are
compared to the effective turbulent friction Reynolds number Ree0

T and the effective friction
Reynolds number Ree0

τ obtained from single-phase simulations of a fluid with viscosity
equal to the effective viscosity of the suspension.

νr = νe/ν is typically estimated via empirical relations at volume fractions larger
than a few per cent, an example being the Eilers fit (Stickel & Powell 2005),
νr = [1+ 1.25φ/(1− φ/0.6)]2. The effective viscosity estimated from simulations
of spherical and oblate particles in laminar flow at Reb = 1000 and φ = 10 % (see
appendix A) is in good agreement with the mentioned fit (2 % underpredicted for
oblates and 4 % overpredicted for spheres), and this relation is therefore used to
estimate the effective viscosity used for the analysis of suspensions in turbulent flow.

The results in Picano et al. (2015) show that spherical particles increase the
turbulence activity in the flow up to φ = 10 %, an effect that overcomes the increase
of the effective viscosity of the suspension. In fact, the increase in the effective
viscosity can result in turbulence attenuation; however, the cases in Picano et al.
(2015) show an enhancement in the presence of spherical particles. For oblate
particles, instead, we observe a clear turbulence attenuation and an associated overall
drag reduction. This raises the question of whether the increased viscosity of the
suspension is the only reason for the turbulence attenuation or whether the specific
particle shape also contributes to dampen the turbulence. To answer this question,
we perform simulations of single-phase flow at bulk Reynolds number equal to the
effective bulk Reynolds number Ree

b = 2hUb/νe, calculated for the corresponding
particle volume fraction.

Figure 6(a) shows the Reynolds stress of the combined phase 〈u′cv′c〉 = Φ〈u′pv′p〉 +
(1 − Φ)〈u′fv′f 〉 for the case with oblate particles at φ = 10 %, compared to a single-
phase flow simulation with ν= νe|φ=10 %. The data reveal that, in the presence of oblate
particles, the turbulence activity is even lower than that predicted by the simulation at
Ree

b, indicating that not only the effective viscosity is responsible for the turbulence
attenuation shown above.

As in Picano et al. (2015), to quantify the level of turbulence activity, we define
the turbulent friction velocity UT

∗ =
√

d〈u′cv′c〉/d(y/h)|y/h=1, calculated as the square
root of the wall-normal derivative of the Reynolds stress profile at the centreline of



www.manaraa.com

Turbulent channel flow with finite oblate spheroids 55

Oblate, AR= 1/3
Case φ = 0 % φ = 5 % φ = 7.9 % φ = 10 % φ = 15 %

νr 1 1.14 1.24 1.32 1.56
Ree

τ 180 157.3 142.7 132.4 110.5
Ree

T 174 150.8 135.3 124.1 96.8
Ree

b 5600 4908 4515 4235 3584
Ree0

τ 180 160 148.7 140.5 121.4
Ree0

T 174 154.1 143.6 134.6 115.7

TABLE 3. The ratio between effective suspension viscosity and the fluid viscosity νr, the
effective friction Reynolds number Ree

τ ≡ hU∗/νe, the effective turbulent friction Reynolds
number Ree

T ≡ hUT
∗ /νe, the effective suspension bulk Reynolds number Ree

b≡ 2hUb/νe, and
the effective turbulent friction Reynolds number and effective friction Reynolds number
Ree0

T and Ree0
τ obtained from single-phase simulations by accounting only for the effective

suspension viscosity, for all cases with oblate particles.

the channel. The slope of the Reynolds stress profile at the centreline is shown in
figure 6(a). Note that the turbulent friction velocity approximates the wall friction
velocity for single-phase flows at high bulk Reynolds number, the error scaling with
1/Reb (Pope 2000). This estimate accounts only for the effect of turbulence and not
for the viscous or the particle-induced stress and therefore helps to quantify the role
of the turbulence activity on the overall drag.

The effective turbulent friction Reynolds number, defined as Ree
T = UT

∗h/νe, is
reported in table 3 for all cases under consideration together with the turbulent friction
Reynolds number obtained from the single-phase simulations Ree0

T (with ν = νe). In
addition to these two, we also depict in figure 6(b) the friction Reynolds number
based on the effective viscosity, Ree

τ =Reτ/νr, and Ree0
τ , the friction Reynolds number

obtained from the single-phase simulations. These are shown for increasing volume
fraction φ and oblate particles. We conclude from figure 6(b) that the oblate particles
reduce the turbulence activity to lower values than those obtained by accounting only
for the effective suspension viscosity, resulting in an overall drag reduction. The
observed drag reduction is therefore related to the specific dynamics of the oblate
particles and their interactions with the turbulent velocity field.

The results presented so far indicate that the turbulence attenuation and the absence
of a particle layer close to the wall (documented in the next section) are responsible
for the drag reduction in the flow laden with oblate particles. Picano et al. (2015)
showed that, for spherical particles at φ= 20 %, the turbulence activity reduces while
the total drag still increases. This is attributed to the increase of the particle-induced
stress at high volume fractions. To better understand the effect of particle-induced
stress for the cases with oblate particles, we perform here a stress budget analysis
similar to that in Lashgari et al. (2014) and Picano et al. (2015).

Based on the formulation proposed in Zhang & Prosperetti (2010), we can write
the mean momentum balance in the channel as

τ

ρf
=U2

∗
(

1− y
h

)
= ν(1−Φ)dUf

dy
− [Φ〈u′pv′p〉 + (1−Φ)〈u′fv′f 〉] +

Φ

ρ
〈σ p

xy〉, (3.2)

where τ is the total stress; see the Appendix in Picano et al. (2015) for a derivation.
The first term on the right-hand side of the budget above is the viscous shear
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FIGURE 7. (Colour online) Momentum budget, normalized with ρf U2
∗ , for oblate particles

at (a) φ = 5 %, (b) φ = 10 % and (c) φ = 15 %, and for spheres at (d) φ = 10 %. Here,
τ is the total stress, τV denotes viscous stress, τT =−〈u′cv′c〉 the turbulent Reynolds shear
stress of the combined phase and τP the particle-induced stress. The particle Reynolds
shear stress τTp =−〈u′pv′p〉 is also depicted with dots.

stress τV , the second and third term are together the turbulent Reynolds shear stress
of the combined phase τT =−〈u′cv′c〉, and the fourth term indicates the particle-induced
stress τP. The momentum transfer pertaining to each term, normalized by ρf U2

∗ , is
depicted versus y/h in figure 7 for oblate particles at φ = 5, 10 and 15 % and for
spheres at φ = 10 %. The contribution due to the particle-induced stress is always
lower than that from the Reynolds stress for oblate particles. As the volume fraction
increases, the relative momentum transfer due to the Reynolds stress decreases, yet
the particle-induced stress does not increase enough to compensate for the reduction
in turbulence activity. The particle-induced stress is considerably higher near the wall
for spheres than for oblate particles, as expected by the absence of the particle layer
close to the wall in the cases of oblates. The momentum budget analysis performed
here shows that, unlike the case of spheres, the effect of the particle-induced
stress on the total drag is small for oblate particles and the Reynolds shear stress
is the main factor determining the overall drag. This confirms that the specific
dynamics of the oblate particles is closely related to the turbulence attenuation and
therefore drag reduction.
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FIGURE 8. (Colour online) Profiles of solid-phase averaged data versus y/h: (a) mean
local volume fraction Φ(y), normalized by total volume fraction φ, and (b) mean particle
velocity profiles, normalized by the fluid bulk velocity Ub. The inset in (b) shows the
difference between the particle and the fluid mean velocity.

3.3. Particle dynamics
The mean local volume fraction Φ(y), normalized by the bulk volume fraction φ, is
depicted in figure 8(a). Spherical particles display a local maximum at a distance
slightly larger than one particle radius from the wall. Picano et al. (2015) attribute
this local maximum to the formation of a particle layer at the wall, due to the
wall–particle interactions that stabilize the particle position. Costa et al. (2016)
explain that the presence of this particle layer always results in drag increase, which
is therefore higher than what can be predicted by accounting only for the effective
suspension viscosity. Interestingly, the particle layer at the wall is not present in the
flow with oblate particles. The local volume fraction, Φ, is considerably lower in the
region close to the wall (y/h< 0.1) for oblates than for spherical particles. A minor
migration towards the channel centre is observed for oblate particles in turbulent flow
and this effect is more pronounced when increasing the volume fraction. Interestingly,
the oblate distribution is uniform in laminar flow, while spherical particles tend to
migrate towards the channel centre; see figure 15 in appendix A.

Figure 8(b) shows the mean particle velocity profiles. The difference between the
particle and the fluid mean velocity, the local slip, is depicted in the inset. As the
velocity of the particles is not zero at the wall, significant slip velocity is found
close to the wall. Interestingly, a local minimum of the velocity difference is observed
for spheres at the location of the particle layer close to the wall. Spherical particles,
trapped in the particle layer, experience a smaller slip velocity due to the higher local
volume fraction at this location, thus creating the mentioned local minimum in the
mean velocity difference. This particle layer disappears for the case with oblates and
the difference in the mean velocity decays monotonically with decreasing wall-normal
distance.

The reasons behind the absence of the particle layer for oblates are investigated here
using a force and torque analysis in the case at φ= 15 %. We compute the mean drag
force FD, lift force FL and spanwise torque Tz acting on the particles as a function of
distance to the wall, y/h, and of the streamwise component of the particle orientation
vector ôx

p. The orientation vector ôp is defined as the unit vector parallel to the particle
symmetry axis and pointing towards the channel centre. Contours of the normalized
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FIGURE 9. (Colour online) Contours of the mean forces and torques acting on the
particles as a function of distance to the wall, y/h, and the streamwise component of the
particle orientation vector, ôx

p. (a) Drag force FD and (b) lift force FL in units of ρf U2
bD2

eq.
(c) Spanwise torque Tz in units of ρf U2

bD3
eq. (d) Schematic of the action of the forces and

torques for the cases of positive and negative ôx
p.

FD, FL and Tz are depicted in figure 9(a–c). The results show that, when particles
are sufficiently close to the wall (high mean velocity gradients), the forces and the
torques acting on the particle change according to their orientation as sketched in
figure 9(d). Particles, on average, have a negative spanwise angular velocity due to
the mean flow gradient, and the analysis presented here, interestingly, indicates that,
when these have a positive ôx

p, they are lifted by the flow towards the channel centre
whereas the opposite is true when they have a negative ôx

p. Note, however, that the
magnitude of the upward lift is significantly higher than the downward force. This
difference in the magnitude can explain the absence of a particle layer for oblates. It
can also be concluded from figure 9(d) that particles near the wall with a negative ôx

p

tend to align parallel to the wall and accelerate towards it; particles with positive ôx
p,

conversely, accelerate towards the channel centre. This indicates that oblate particles
are most likely parallel to the wall in its vicinity. This stable configuration and its
importance for drag reduction are addressed later in this section.

To gain further insight into the turbulence attenuation in the presence of oblates,
we investigate the particle collective behaviour. Figure 10 shows the r.m.s. of the
solid-phase velocity fluctuations. The data clearly reveal that all three components
of the particle velocity fluctuations are considerably smaller than in the case of
spherical particles, except for a very small region close to the wall, where the
rare collisions with the wall have a large impact on the statistics. It should also
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FIGURE 10. (Colour online) Intensity of the solid-phase velocity fluctuation components,
scaled in outer units (bulk velocity Ub), for the different cases under consideration:
(a) streamwise u′frms

, (b) wall-normal v′frms
and (c) spanwise w′frms

components. (d) The
ratio between the turbulent kinetic energy of the fluid and that of the solid phase Kf /Kp.

be noted that, contrary to the case of spheres, oblate particles cannot roll on the
wall and any collision with the wall can create a large particle velocity fluctuation.
A maximum of the wall-normal particle velocity fluctuations v′p very close to the
wall and a local minimum at y/h ≈ 0.1 are observed for oblate particles, whereas a
local maximum and a weak local minimum at y/h ≈ 0.15 can be seen for spheres.
The ratio between the turbulent kinetic energy of the fluid and of the solid phase
Kf /Kp = (u′f 2 + v′f 2 + w′f

2
)/(u′p

2 + v′p2 + w′p
2
), depicted in figure 10(d), shows that

particle velocities tend to fluctuate less than the fluid one at the same position except
for the region close to the wall where velocities fluctuate more due to the absence
of a no-slip condition. This tendency is considerably higher for oblate particles, as
shown by the peak of the velocity fluctuations close to the wall, y≈ 0.1.

The cosine of the mean particle inclination angle, θ , measured with respect to the
wall, is reported in figure 11(a) versus the distance from the wall. Note that values
of cos θ close to 1 indicate that the particles tend to be aligned with their semi-minor
(symmetry) axis normal to the wall, whereas the oblates sit with the major axis normal
to the wall if θ ≈ 0. From figure 11(a), we note the clear tendency of oblate particles
to be, on average, parallel to the wall; far from the wall they tend to be more isotropic,
even though they still show some preferential orientation. This preferential orientation
far from the wall is more pronounced in the laminar regime when the fluid velocity
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FIGURE 11. (Colour online) (a) Cosine of the mean particle inclination angle θ , measured
with respect to the wall, versus y/h. Mean particle absolute value of angular velocity,
given in outer units for: (b) spanwise direction |Ωz|, (c) streamwise direction |Ωx| and
(d) wall-normal direction |Ωy|.

fluctuations are weak (see appendix A). For spheres, the poles are fixed arbitrarily to
show their uniform orientation.

The mean absolute value of the particle angular velocities is reported in figure 11.
As seen in figure 11(b), displaying the rotation rate in the spanwise direction, |Ωz|,
oblate particles have significantly lower rotation rates than spheres close to the wall.
The mean particle angular velocity in the streamwise and wall-normal directions (see
figure 11c,d) are lower in the case of oblate particles, except for the near wall-region
where the wall-normal angular velocity is larger than that of spheres.

As depicted in figure 11(a), oblate particles are, on average, parallel to the wall; to
fully characterize the particle relative orientation we therefore consider the properties
of their order-parameter tensor (Prost 1995),

Q= 〈ô⊗ ô− I/3〉, (3.3)

where ô is the unit vector associated with the particle symmetry axis and I the identity
tensor. The eigenvalues (λi) of the tensor Q are equal to zero in the case of a fully
isotropic particle orientation, while the tendency to align in a certain direction
(nematic order) is reflected in non-vanishing real eigenvalues. The eigenvalues
(λ1 > λ2 > λ3) of the symmetric tensor Q can be expressed in the following form:

λ1 = 2
3λ, λ2 =− 1

3(λ+ ζ ), λ3 =− 1
3(λ− ζ ), (3.4a−c)



www.manaraa.com

Turbulent channel flow with finite oblate spheroids 61

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

1.0

0

0.2

0.4

0.6

0.8

0.5

0.2

0.1

0

0.3

0.4

Oblate _

Oblate _

Oblate _

Sphere _

(a) (b)

FIGURE 12. (Colour online) (a) The nematic order parameter λ and (b) the biaxial
parameter ζ versus y/h for the simulated cases. Results for spheres are also depicted to
indicate a suspension with fully isotropic particle orientation.

with λ the scalar nematic order parameter and ζ the biaxial index. It can be shown
(Prost 1995) that λ varies between −0.5 < λ < 1, where a positive λ indicates
that particles tend to be oriented in one direction, while a negative λ shows that
the orientation vector preferentially lies in one plane. The parameter ζ shows the
biaxiality of the order-parameter tensor: ζ ≈ 0 indicates that there is only one
preferential direction associated with the eigenvector of largest eigenvalue (λ1), and
a non-zero value of ζ creates a nematic phase that is considered biaxial, meaning
that there exist two preferential directions. Here we divide the half-channel height
h into 20 regions and compute the order-parameter tensor for each of these regions.
The values of λ and ζ obtained in each slab are displayed in figure 12(a,b) versus
the channel height for all the investigated cases. The results reveal, as expected from
figure 11(a), a large value of λ close to the wall (λ≈ 1), which decays at the centre
of the channel. Thus, particles are preferentially aligned parallel to the wall in its
vicinity. From the values of ζ throughout the channel, we find a region with larger
ζ (0.2 < y/h < 0.4), where the tensor Q can be considered biaxial. This means that
particles tend to be preferentially oriented also in a second direction, which is found
to be in the spanwise direction (particles are rolling with their symmetry axis, oriented
in the spanwise direction). From a phenomenological point of view, it appears that
particles close to the wall leave the area, rolling in the streamwise direction; therefore
particles preferentially align with their symmetry axis in the spanwise direction. This
information can be obtained from the eigenvector associated with λ2.

Next, we analyse the particle relative orientation by calculating the orientation
correlation function (OCF),

OCF(r)= 〈2|ôp · ôq| − 1〉, (3.5)

where ôp and ôq denote the orientations of particles p and q at distance r between their
centres. Value OCF(r)=1 indicates particle pairs at distance r perfectly aligned, while
OCF(r) = −1 indicates particles with the symmetry axes orthogonal to each other.
This observable is zero for a suspension with random particle orientation. Figure 13
depicts OCF versus the separation r/Deq for the simulated cases in three regions,
where regions I to III refer to the near-wall region, y/h< 1/3, a region between the
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FIGURE 13. (Colour online) Orientational correlation function OCF(r), versus centre
separation r/Deq for the simulated cases in three regions, where regions I to III refer to
y/h< 1/3, 1/3< y/h< 2/3 and 2/3< y/h< 1, respectively.

wall and the core, 1/3 < y/h < 2/3, and the region around the channel centreline,
2/3 < y/h < 1. The results show that particles become more aligned with respect to
each other as the volume fraction φ increases; the alignment increases as the distance
from the wall reduces. A small peak is observed in figure 13 around 1.2< r/Deq <

1.5≈ 2rmax, which indicates particles sitting on top of each other, parallel to the wall
and with their centres shifted by less than the major oblate diameter. The particles
therefore seem to form structures that are more reluctant to rotate.

The results so far indicate that oblate particles experience considerably smaller
angular velocities close to the wall (except for |Ωy|) and stay prevalently with their
major axes parallel to the wall. These two facts may explain the turbulence attenuation
observed in the presence of oblate particles. As the volume fraction φ increases, oblate
particles create a sort of strong shield that dampens the turbulent activity close to
the wall, preventing the outer layer turbulence from directly interacting with the
wall. Indeed, in the simulations reported in Ardekani et al. (2016a), we examined
the effect of the particle rotation on the turbulence dynamics. To this end, we have
performed a simulation at φ = 10 % in which the oblate particles can translate but
not rotate and are kept always parallel to the wall (semi-minor axis normal to the
wall).

The results of this simulation display an even larger turbulence attenuation; see
figure 14 where the Reynolds stresses of the combined phase of the non-rotating (NR)
and freely rotating oblate particles are compared. As a consequence of the reduced
Reynolds stresses, the friction Reynolds number considerably decreases, Reτ = 163,
corresponding to 18 % drag reduction, as also reported in figure 3. It should be noted
that it might be feasible to operate with a suspension of particles kept at a preferential
orientation using an external magnetic field (Rosensweig 2013).

4. Final remarks

We have reported results from simulations of turbulent channel flow of suspensions
of finite-size oblate spheroidal particles with AR= 1/3 at different volume fractions,
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FIGURE 14. (Colour online) Reynolds stress profile of the combined phase for the non-
rotating (NR) oblate case, compared to the previous cases with free oblates.

5, 7.9, 10 and 15 %. The numerical approach proposed by Ardekani et al. (2016b) is
used for the simulations of oblate spheroidal particles presented here. This is based on
the IBM method for the fluid–solid interactions with lubrication and contact models
for the short-range particle–particle (particle–wall) interactions.

Drag reduction with respect to single-phase turbulence is found in the presence
of oblate particles, contrary to the results for spherical particles shown in Picano
et al. (2015), for which the drag increases with the particle volume fraction. The
two important factors determining the overall drag are the turbulence activity in
the suspension and the particle-induced stresses, which are due not only to the
increase of the suspension effective viscosity in the presence of particles but
also to their distribution across the channel. In fact, Picano et al. (2015) have
shown that for suspensions of spheres a particle layer forms close to the wall,
causing high particle-induced stresses in this region. The particle-induced stresses
compensate for the reduced Reynolds shear stress observed at high volume fractions
(φ > 10 %), resulting in an overall drag increase. Costa et al. (2016) indeed showed
that a combination of higher effective viscosity and the presence of the mentioned
particle layer is at the origin of the overall drag increase in suspensions of spheres.
Interestingly, such a particle layer is not present in the flow laden with oblate
particles and this makes the turbulence activity the most important factor determining
the overall drag.

Attenuation of the turbulence activity is observed in the presence of oblate particles,
an effect more pronounced as the volume fraction increases. It is well known that
the effective viscosity of a particle suspension is always higher than that of the
single-phase flow, which can cause turbulence attenuation. In this study, however, we
show that the presence of oblate particles reduces the turbulence activity to lower
values than those obtained by accounting only for the effective suspension viscosity.
To show this, we perform simulations of single-phase flow at bulk Reynolds numbers
calculated with the effective viscosity for the corresponding particle volume fraction,
concluding that the specific dynamics of the oblate particles and their interactions
with the turbulent velocity field considerably reduce the turbulence activity of the
suspension. In fact, turbulence attenuation is sufficiently high that, despite the increase
in effective viscosity, overall drag reduction is achieved.
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We explain the turbulence attenuation observed in the presence of oblate particles by
noting that oblate particles experience considerably lower angular velocities close to
the wall and stay prevalently aligned parallel to the wall. At high volume fractions, the
oblate particles create a kind of strong shield that dampens the turbulent fluctuations
close to the wall, separating the outer layer turbulence from direct interaction with the
wall. To show the isolated effect of the particle rotation and the orientation on the
turbulent dynamics, we perform a simulation at φ = 10 % in the same flow geometry,
in which the oblate particles are free to translate but cannot rotate and are kept always
parallel to the wall (semi-minor axis normal to the wall). This simulation reveals
an even larger turbulence attenuation and therefore increased drag reduction when
compared to the cases where oblate particles are free to rotate.

Examining the particle relative orientation, e.g. by calculating the nematic order and
the orientation correlation function of the centre separation r between the particles, we
show that the particles are preferentially parallel to the wall in its vicinity and are also
increasingly parallel to each other as the volume fraction φ increases, with the highest
relative alignment in the region close to the wall. The relative alignment in this region
is of utmost importance in reducing the local turbulence fluctuations. The analysis of
the forces acting on the particles further shows that particles aligning with the wall
are attracted towards it, while they are lifted towards the centreline when inclined.

We have shown here that finite-size oblates reduce drag in turbulent channel flow
as already observed for small fibres and polymers. The physical mechanisms are,
however, different, as the latter two seem to act on the small scales in the flow. In
the future, it will therefore be interesting to study the interactions among finite-size
fibres or prolate particles and turbulence as done in Do-Quang et al. (2014) at low
volume fractions.
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Appendix. Laminar flow of suspensions

In this appendix, we report results for the laminar flow of suspensions of spheres
and oblate particles. The data are compared here and used as reference when
discussing the turbulent cases above. The simulations are performed at Reb = 1000
and φ = 10 % in the same pressure-driven plane channel.

The suspension effective viscosity, quantified here by the friction Reynolds number,
Reτ , in analogy to the turbulent cases, is slightly larger for the oblate particles,
Reτ = 44.6, against Reτ = 43.3 for spheres (i.e. 15 % increase for oblates and 12 %
for spheres with respect to the laminar single-phase flow). Figure 15 displays the
wall-normal profiles of the local volume fraction, Φ, for the two types of particles
under consideration. The data clearly show that spheres migrate towards the channel
centre, displaying a local maximum close to the wall, as also reported by Lashgari
et al. (2016); interestingly, this migration disappears for disc-like particles whose
distribution is more uniform throughout the channel. Two local maxima are observed
for oblates: one close to the wall (y/h= 0.1) and the other one close to the channel
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FIGURE 15. (Colour online) Mean local volume fraction Φ(y), normalized by total
volume fraction φ, versus y/h for the laminar flow of spherical and oblate particles in
channel.

centre (y/h = 0.8). The higher local volume fraction close to the wall can explain
the higher drag for the laminar flow of oblate particles. The analysis of the forces
and torques presented in the text has been repeated for laminar flow to observe that
the difference between the positive and negative lift forces is much less than in
the turbulent regime, probably due to the lower velocity gradients close to the wall,
which may explain why the particles have a more or less uniform distribution.

The mean particle orientation and rotation in laminar flow are compared in figure 16.
The tendency of oblate particles to align with the gradient direction in the regions
far from the wall is observed to be more pronounced in the laminar regime than in
turbulent flow. The mean absolute value of the particle angular velocities, depicted
in figure 16(b–d), shows higher values for oblate particles in the streamwise and the
wall-normal directions close to the wall and smaller for rotation rates in the spanwise
direction.

The nematic order parameter λ and the biaxial parameter ζ are depicted in figure 17
versus the channel height. The profile of λ in figure 17(a) is similar to the mean
orientation profile of oblate particles in figure 16(a); values close to 1 in both figures
show the tendency of the particles to be aligned with the symmetry axis normal to the
wall. Figure 17(b) displays two local maxima of the biaxial parameter ζ : one close
to the wall and the other one close to the channel centre. Interestingly, these local
maxima appear to correspond to the local maxima of the local volume fraction profiles
in figure 15, revealing that the tendency to be oriented also in the spanwise direction
increases in those locations with higher local volume fractions.

Finally, figure 18 reports the orientational correlation function, OCF, versus the
particle centre separation r/Deq in three regions, where regions I to III refer to y/h<
1/3, 1/3< y/h< 2/3 and 2/3< y/h< 1. The results for laminar flow show that the
particle orientations are more correlated with respect to the turbulent cases – in other
words that the order is disrupted by turbulent mixing.
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FIGURE 16. (Colour online) (a) The cosine of the mean particle inclination angle θ ,
measured with respect to the wall, versus y/h. Mean particle absolute value of angular
velocity, normalized with Ub/h in (b) spanwise direction |Ωz|, (c) streamwise direction
|Ωx| and (d) wall-normal direction |Ωy|.
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FIGURE 17. (Colour online) (a) The nematic order parameter λ and (b) the biaxial
parameter ζ versus y/h for the laminar cases studied here. Results for spheres are also
depicted to confirm their fully isotropic particle orientation.
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FIGURE 18. (Colour online) Orientational correlation function OCF(r) versus centre
separation r/Deq for the laminar cases in three regions, where regions I to III refer to
y/h< 1/3, 1/3< y/h< 2/3 and 2/3< y/h< 1, respectively.
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